The best gaming monitors and best graphics cards are packed with features, but one aspect that often gets overlooked is the inclusion of DisplayPort vs. HDMI. What are the differences between the two ports and is using one for connecting to your system definitively better?
You might think it's a simple matter of hooking up whatever cable comes with your monitor to your PC and calling it a day, but there are differences that can often mean a loss of refresh rate, color quality, or both if you're not careful. Here's what you need to know about DisplayPort vs. HDMI connections.
If you're looking to buy a new PC monitor or buy a new graphics card, you'll want to consider the capabilities of both sides of the connection — the video output of your graphics card and the video input on your display — before making any purchases. Our GPU Benchmarks hierarchy will tell you how the various graphics cards rank in terms of performance, but it doesn't dig into the connectivity options, which is something we'll cover here.
Mini Displayport To Hdmi Adapter For Apple Macbook Pro, Air, Mac Mini
The latest display connectivity standards are DisplayPort and HDMI (High-Definition Multimedia Interface). DisplayPort first appeared in 2006, while HDMI came out in 2002. Both are digital standards, meaning all the data about the pixels on your screen is represented as 0s and 1s as it zips across your cable, and it's up to the display to convert that digital information into an image on your screen.
Earlier digital monitors used DVI (Digital Visual Interface) connectors, and going back even further we had analog VGA (Video Graphics Array) — along with component RGB, S-Video, composite video, EGA and CGA. You don't want to use VGA or any of those others in the 2020s, though. They're old, meaning, any new GPU likely won't even support the connector, and even if they did, you'd be using an analog signal that's prone to interference. Yuck.
DVI is the bare minimum you want to use today, and even that has limitations. It has a lot in common with early HDMI, just without audio support. It works fine for gaming at 1080p, or 1440p resolution if you have a dual-link connection. Dual-link DVI-D (opens in new tab) is basically double the bandwidth of single-link DVI-D (opens in new tab) via extra pins and wires, and most modern GPUs with a DVI port support dual-link. But the truly modern graphics cards like Nvidia's Ada Lovelace RTX 40-series and AMD's RDNA 3 RX 7000-series almost never include DVI connectors these days.
Buy Amazonbasics Uni Directional Displayport To Hdmi Video Display Cable, 4k@30hz
If you're wondering about Thunderbolt 2/3, it basically just routes DisplayPort over the Thunderbolt connection. Thunderbolt 2 supports DisplayPort 1.2, and Thunderbolt 3 supports DisplayPort 1.4 video. It's also possible to route HDMI 2.0 over Thunderbolt 3 with the right hardware.
For newer displays, it's best to go with DisplayPort or HDMI. But is there a clear winner between the two? Let's dig into the details.
Not all DisplayPort and HDMI ports are created equal. The DisplayPort and HDMI standards are backward compatible, meaning you can plug in an HDTV from the mid-00s and it should still work with a brand new RTX 20-series or RX 5000-series graphics card. However, the connection between your display and graphics card will end up using the best option supported by both the sending and receiving ends of the connection. That might mean the best 4K gaming monitor with 144 Hz and HDR will end up running at 4K and 24 Hz on an older graphics card!
The Best Tablets With A Stylus Pen For Drawing And Writing
Here's a quick overview of the major DisplayPort and HDMI revisions, their maximum signal rates and the GPU families that first added support for the standard.
Note that there are two bandwidth columns: transmission rate and data rate. The DisplayPort and HDMI digital signals use bitrate encoding of some form — 8b/10b for most of the older standards, 16b/18b for HDMI 2.1, and 128b/132b for DisplayPort 2.0. 8b/10b encoding for example means for every 8 bits of data, 10 bits are actually transmitted, with the extra bits used to help maintain signal integrity (eg, by ensuring zero DC bias).
That means only 80% of the theoretical bandwidth is actually available for data use with 8b/10b. 16b/18b encoding improves that to 88.9% efficiency, while 128b/132b encoding yields 97% efficiency. There are still other considerations, like the auxiliary channel on HDMI, but that's not a major factor for PC use.
Amazon.com: Lxjadap Hdmi Adapter For Iphone To Tv,1080p Digital Av Adapter For Iphone(no Need Power) Plug And Play, Compatible With Iphone 14/13/12/11/x/8/7/ipad Support Ios 16
To understand the above chart in context, we need to go deeper. What all digital connections — DisplayPort, HDMI and even DVI-D — end up coming down to is the required bandwidth. Every pixel on your display has three components: red, green, and blue (RGB) — alternatively: luma, blue chroma difference, and red chroma difference (YCbCr/YPbPr) can be used. Whatever your GPU renders internally (typically 16-bit floating point RGBA, where A is the alpha/transparency information), that data gets converted into a signal for your display.
The standard in the past has been 24-bit color, or 8 bits each for the red, green and blue color components. HDR and high color depth displays have bumped that to 10-bit color, with 12-bit and 16-bit options as well, though the latter two are mostly in the professional space. Generally speaking, display signals use either 24 bits per pixel (bpp) or 30 bpp, with the best HDR monitors opting for 30 bpp. Multiply the color depth by the number of pixels and the screen refresh rate and you get the minimum required bandwidth. We say 'minimum' because there are a bunch of other factors as well.
Display timings are relatively complex calculations. The VESA governing body defines the standards, and there's even a handy spreadsheet that spits out the actual timings for a given resolution. A 1920x1080 monitor at a 60 Hz refresh rate, for example, uses 2, 000 pixels per horizontal line and 1, 111 lines once all the timing stuff is added. That's because display blanking intervals need to be factored in. (These blanking intervals are partly a holdover from the analog CRT screen days, but the standards still include it even with digital displays.)
Is This The Ultimate Windows Docking Station? Meet The Accell Thunderbolt 4
Using the VESA spreadsheet and running the calculations gives the following bandwidth requirements. Look at the following table and compare it with the first table; if the required data bandwidth is less than the max data rate that a standard supports, then the resolution can be used.
Signals, however. DisplayPort 1.4 added the option of Display Stream Compression 1.2a (DSC), which is also part of HDMI 2.1. In short, DSC helps overcome bandwidth limitations, which are becoming increasingly problematic as resolutions and refresh rates increase. For example, basic 24 bpp at 8K and 60 Hz needs 49.65 Gbps of data bandwidth, or 62.06 Gbps for 10 bpp HDR color. 8K 120 Hz 10 bpp HDR, a resolution that we're likely to see more of in the future, needs 127.75 Gbps. Yikes!
DSC can provide up to a 3:1 compression ratio by converting to YCgCo and using delta PCM encoding. It provides a "visually lossless" (and sometimes even truly lossless, depending on what you're viewing) result. Using DSC, 8K 120 Hz HDR is suddenly viable, with a bandwidth requirement of 'only' 42.58 Gbps.
Plugable Usb 3.0 To 2k Hdmi Video Graphics Adapter With Audio For Mult
There's a catch with DSC, however: Support tends to be rather hit and miss. We've tested a bunch of graphics cards using a Samsung Odyssey Neo G8 32, which supports up to 4K at 240 Hz over DisplayPort 1.4 or HDMI 2.1. On DisplayPort connections, most of the latest GPUs are fine, but cards from a generation or two back may not even allow the use of 240 Hz. We've also seen video signal corruption on occasion, where dropping to 120 Hz (still with DSC) often fixes the problem. In short, cable quality and the DSC hardware implementation still factor into the equation.
Both HDMI and DisplayPort can also carry audio data, which requires bandwidth as well, though it's a minuscule amount compared to the video data. DisplayPort and HDMI currently use a maximum of 36.86 Mbps for audio, or 0.037 Gbps if we keep things in the same units as video. Earlier versions of each standard can use even less data for audio. One important note is that HDMI supports audio pass through, while DisplayPort does not. If you're planning to hook up your GPU to an amplifier, HDMI provides a better solution.
That's a lengthy introduction to a complex subject, but if you've ever wondered why the simple math (resolution * refresh rate * color depth) doesn't match published specs, it's because of all the timing standards, encoding, audio and more. Bandwidth isn't the only factor, but in general, the standard with a higher maximum bandwidth is 'better.'
Asus Rog Strix Geforce Rtx 4080 Oc Edition Gaming Graphics Card (pcie 4.0, 16gb Gddr6x, Hdmi 2.1a, Displayport 1.4a) Rog Strix Rtx4080 O16g Gaming
Currently DisplayPort 1.4 is the most capable and readily available version of the DisplayPort standard. The DisplayPort 2.0 spec came out in June 2019, and Intel's Arc Alchemist GPUs along with AMD's RDNA 3 GPUs support the standard (which has since been bumped to DisplayPort 2.1). Nvidia for its part has decided to stick with DisplayPort 1.4a with its Ada Lovelace parts.
There are now cards with DisplayPort 2.1 support, but they're still of
0 komentar
Posting Komentar